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Abstract

Ity_lro_tatb' adjus+zm'nt cllno to <li;tbatic heating in two nonisothermal atmosphrres is eX;Ulline_l. In tile

first ,'a_e the teml_eratur+ _ :qr:tti[i(';_tion is (:ontitmous: in th, _ se('on<l ,'a_e tit+ + atmosph(,re is ('ott_pos_+d of

a ++';trill. isot}+ermal troposphere and ;t +'older. isotherntal, senti-infinitely deep stratosphere. In both ca+es

hydrostatic adjustment, to a good approximation, follows the pattern f,>und in tile I,amb probl++m (senti-

infinitely deep. isothermal atmosphere): Initially we have acoustic waves with the kinrtic energy in_'reasing

or decreasing at the expense of available elastic energy. After this initial period the acoustic waves evolve

into acoustic-gravity waves with the kinetic, available potential and available elastic energies interacting with

each other, l:{elaxation to hydrostatic balance occurs within a few oscillations.

Stratification in an atmosphere with a continuous temperature profile affects primarily the shape and

amplitude of the disturbances. In the two-layer atmosphere, a certain amount of energy is trapped in the

tropospheric waveguide as disturbances reflect off the tropopause and back into the troposphere+ \Vitheach

internal reflection a portion of this trapped energy escapes and radiates to infinity.



1. Introduction.

The atnlos[)h¢,t'e continuotb_ly un_lerg_>cs v;tric)u> form> of" adju>tnlent. Ou the arge :cal,._ baroclil|i<

waves are excited and reduce the n(2rth-:_outh temp,_rature graclient so offi(:iexltlv that the extratrc_pi('al

atmosphere remains near ueutral stability (_tone 1!)78). Inertial-gravity waves radiate ageostrophic distur-

bances out to infinity, leaving behind a geostrophic final state (Bossby 1!)?,$). On the mesoscale hvclro_tatic

imbalances are eliminated bv the excitation o[" acoustic-gravity waves.

Although baroclinic and geostrophic adjustment have received considerable attention, it is only recently

that hydrostatic adjustment has been studied. Bannon (1995) examined how hydrostatic imbalances excite

acoustic-gravity waves ia an isothermal atmosphere, the so-called Lamb problem. An important aspect of

his analysis was a computation of the energetics. Bannon showed that nonhydrostatic disturbances may

generate three types of energy: kinetic, available potential and available elastic energies. Although he found

the initial and final distribution of these three energies during hydrostatic adjustment, he did not follow their

temporal evaluation. We will do this in Section 2.

Although Lamb's problem provides many useful insights into hydrostatic adjustment, the atmosphere

is not isothermal. Vertical stratification plays an important role in determining the vertical propagation of

acoustic-gravity waves from their origin in the troposphere into the upper atmosphere (Francis 1.t)7:L Fried-

man 1962). Consequently, vertical stratification must also play an important role ia hydrostatic adjustment.

The purpose of this paper is to examine those effects.

To realize our goal, I have examined two stratifications which highlight different effects. In Section ::I,

we examine hydrostatic adjustment when the temperature profile is given by E_(z) = T. (l + 3:-:/0). This

basic state yields a nearly constant lapse rate in the troposphere and an essentially isothermal stratosphere: a

similar model was examined by Pekeris ([!)48). With this thermal stratification, acoustic-gravity waves travel

at different phase speeds within the atmosphere, just as electric: waves do within a non,miform translnission

line.

To examine the case when a sharp troposphere is present, we introduce in Sectiou -I a two-layer at-

mosphere where one layer represents the troposphere and the other models the stratosphere. Both layers

are isothermal bilt at ditferent temperatures. In this case m:_msti_:-gravity waves will r,'fl_e_:t, at th," interfa_:e
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(trol-,Ol);ms_,);m,l_'n,'rgyI,':ll.:sfr,_mthe:tr(,i),_-.i)h,,r,,into th,,str:tt_)sl,h(,re.Fin:dly. in N,'cti,)n .5 we l>r('_,'nt

ollr COll('[llsi()ns.

2. Tile Lamb Pro|)l_m

As a benchmark for later computations we first examine the energeti(:s during hydrostatic adjustment

itl an isothermal atmosphere, q_he hydrostatic adjustnlent arises due to diabatie heating o1" finite x_'rtical

extent.

We begin by modeling the atmosphere as a stably' stratified, inviscid, diatomic, ideal gas in a ('arte-

sian coordinate system where -9'k equals the acceleration due to gravity. The one-dimensional linearized

equations for small-amplitude perturbations about the basic state

po(z) = p.:-:tH:, t:o(z) = p.e -:IH:,

(21)

T_(z) = T.. 0o(:) = T.e '_:/us

are

and

Ou, Op

po Ot - O: P#" (2.2)

Op _ O_t"po -_ + _' + po _ = o. (2.3)

Op 0 tr
+ poe-='._- - pogtc = .Xp[H(z - cz) - H(: - 2a)]d(t). (2.4)

o_-

O0 doe
Ot + --J-f=t'" -- O°'-kP[H(z - ct) - [-[(z - 2a)]d(t). (2.5)

- *tPo

whore the basic state (lllatltities have a subscript nought and the asterisk subscript denotes a (-onstant

reference value. Here tt_ denotes the velocity in the vortical : direction at time t. p denotes pr_ssure. [

denotes the temperature. 0 denotes the potential temperature, p denotes the density. [[.s. the scale height.

equals RT./9. R denotes the ideal gas constant. : = ('p/C_, = 7/5 is the ratio of the specific h_,ats at constant

pressure and volume, c-" = ,,HT, and ,_ = (2' - l)/;,. The functions [[( ) and d( ) denote the Heaviside step

and delta functions, respectively. In addition to the governing equations, we have the boundary :onclition.-,

that

u'(0. t) : 0 and _fli2r) p,)(:)_c'-'(:, t) _ 0 (2.61!

")



and tlt+' i.iihd +,'Otl<]iliOtlS that

p(:.O)= O(:.I))-- p(:.O)= ,'(:.0)= o. (27)

Equations (2.2) +(2.5) may be combined together to yieht

0-t[ 2-- + 2p0c e +_ =---'2,\,r \ 0,, ) J 0:
(2.8)

where

._ '.1 00o gn

_\°- Oo Oz - Hs
(2.9)

Equation (2.8) describes the energetics of the model; tile first term on the left side of (2.8) gives the kinetic

energy per unit volume while the second and third terms give the available elastic and available potential

energies, respectively'. See Bannon (199.5).

To solve (2.2) (2.5), we combine these equations together to obtain a single equation in tc:

/./F .)902 Ow ., < - w Ap...
+ g-i_77 - c- -b-7_- = ---to(: - a) - 8(: - 2+)laCe). (210)0t----Y p0

In appendix A. I solve (2.10) by Fourier sine and Laplace transforms. Once ,'(z, t) is known, the other

solutions follow from (2.3)-(2.5). These sohitions are

u'(:.l) 1 alH+ 2CtI t) IV(z + 2a,t)] t_al"_H+-_ -_+ -[+i(I:-ol,t)-W(z+a,t)]-Xu, _e -[IV(I:- , - -_ (2.11)

p(z,t)

,..kp
-- H(z-a)-H(z-2a)

1 _a/ff<.,-z/2H++ +_. -_ . [p(l:- 2at,t)- p(z + 2a, t)]
~

_ tea/2Hsa-z/2Hs+_+ + [P(t:- al,t)- e(: + a.t)]

_ (G' -- 2) ae<'tH-<+-zt2H-_ {e(l: - 2,-,I,t) - e(: + 2,. t)]
4*,,HD'

+ (_ - 2)<'+<'/'-"<"-_+-:t_"-_ [e(l: - ,I, t) - -e(: + <,.t)]
11H.s

(2.11)

and

0(:,t)
Ay"

- eCl+'_>:tH-_ [H(-: - a) - H(z - 2.)]I';,

Kll_ a/llm #( 1 +2n):/2tf<

- [e(I..- - 2,-,I.t) - e)(: + 2,,. t)]
2. H<

glld<_/2ll:: £ i ! +2,,:!z/21t +

+ {e)(I-.-- ,1. t) - c:)(: + ,,. t)].
2i fI._

(2.12)



who['o

aild

lt(_.t) --,:/-'"_& Wc-t _ - (-'/(_l[_) [l(,.t - _).

p(c,.t) = H(,.t - _I _.(_I t -== .
C2

(2.13)

(2.14)

®((,t)- c H(ct_ () t J_ Vc-r_'' -(_/'(2Hs) dr, (2.15)
(l / c J

AT = ToAp/p., _kw = Ap/p.c, sgn( ) is the sign function and fl0( ) and Ji( ) denote Besse[ functions of the

first kind and zeroth and first order, respectively. The integrals in (2.14)-(2.15) were evaluated using Cote's

sixth order sehenae (see FrSberg 1968, p. 201).

For a fixed value of a/Hs, p(z,t), w(z, t), and O(z. t) may be computed. Initially waves are excited. As

these disturbances propagate out to infinity, the atmosphere approaches the steady-state given by

u,,(:) = 0 (2.1o)

P'(:__2= H(: - .) - H(: - 2_)
£p

+ _e_/Hse -=/_-Hs [sgn(z - 2a)e -1=-'"t/2Hs - e -(z+_-_)/-'us]

-- 6 2 ' _ <
(_ 2)6a/H-¢e -z/2Hs [e_[z_2a[/2H m _ -(:+'a,/°H_ l

2;

(2'-- 2) ea/?H'e-:/2Hs [e-I:-alt214s e_i:+a)/eHs]+
23,

(217)

and

0,(:)
AT

-/_+")-/'-_ [H(:- .)- H(: -2.)]/':,

_ .' -: 2c : 2

+ e .
L d^f

(2.1s)

A}.though we couhl present the tempora[ evolution of these fields, we have chosen to proceed along a diffi_rent

path. From ('2.8). we have that

+ 2p0c'-' + .,-zTrv.., =
a COllS[allf.

J,, • 2.\,r 0_,) j
!12.19)



('o.s,,q,lomly, I havographed in Fig. ] the _eJ.p,.'alevolmkm oflhe kinegi,' (KE). availabh',qas_h" (.\E).

aml availabl, • poh,mial (PE) ,,tlel, gios over _tw entire c,flumn, l'o highlight the transient di_Turtmm',s, _he

steady-stare values AE and PE have boen subtracled off and the plotted enorgies lmvo boen normaliz_'d with

r'spee¢ to the total energy.

As Fig. [ shows, the kinetic energy initially increases (decreases) at the expense (gain) of elastic energy.

During this period of time. which depend_ on a/H.5, we have acoustic waves. After this initial periled th,'s_

acoustic waves evolve into acoustic-gravity waves and hydrostatic adjustment begins to occur. Tile ebb and

flow of energy between AE. KE and PE dampens out with the oscillations having a decreasing period that

depends upon a/Hs. Within a few oscillations hydrostatic adjustment has occurred,

We also note that tile amount of transient available potential energy is small compared to the transient

kinetic and available elastic energies. This is clearly seen in a plot of tile integrand of (2.19) presented in

Fig. 2. For the available potential energy, essentially all of the energy is given by the steady state (the spike

on the left side). [n contrast, the kinetic and available elastic energies are dominated by transients that

propagate out to infinity.

Having presented the temporal evolution of kinetic, available elastic, and available potential energies

during the hydrostatic adjustment problem for the classic Lamb problem, we examine the same problem in

tile next section where the temperature decreases with height as 7". (1 + de-;H)).

3. The Exponential Temperature Profile

Having found the waves excited in an uniform (isothermal) atmosphere by a region of _liaba_ic heating.

we now examine a continuously varying temperature field, namely

"/_(:) = 7". ([ + 3e-:/D) . (3.1)

This particular temperature profile produces a constant lapse rate in the lower troposphere' (= <7<D) and

an isothermal atmosphere in the upper stratosphere (z >> D). Furthermore, tile speed of sound decreases

monotonically from its maxinmm at _he grouml [,) its minimum value c'_ = 2,RT. in the upper sl'ratosphere.

[:,or the observed atmosphere. 3 = 0.3 and 7: = 22[)K. Wi_h tiwse parlicular values for 3 and "l'. and



a/D : 1.5. (3. l) yi,'hIs a. sl,t'f+u',' t,'tup+'r:ttllr,' _)t" 2_ti [( an, I tctnp,,r ttur,,s ,d" :2._!) 1< aIM :2 t;_ [( ;tl th,, h+'ight.,

ol'3 ktn aml 10 kin. t-esp<,criv,,ly.

our analysis again starts with (2.:2) (2.5)..\_ait_ the,..-,,+ equations may be ,',mfl_in+.d tog+'ther to giv,>

(2. I0) with the e×c+'ptiotl that now th. basic +tat++ xat'h:s ac+'c, rdim+ ro (:_. I).

Q 1 + ,3 )D/I-t+P+>(:) = P'c-:fH; l + .3+--:It) (3.2)

and

/_(:) = p.e_:/H: (l + 3) D/H::

(t -+-.;?(--:/D) I +D/II< "

00(:) = T,,+e'_:ltl<- (1 + ,Je-:ID) I+_:D/H--

( 1 + J)_,D/Hs

(33)

(3.4)

',,,'here p. = p./_T, and p. is the pressure at : = 0. For a statically stable atmosphere. D/Hs > 3/_.

The nondimensional, Laplace-transforn>d vertical velocity equation becomes

(l+3e -_:/t)) deII a dII"
dz _- Hs d:

s'-'II = P_.7_"[d(: _ I) -_(: - 2)]. (3.5)
Po

In Appendix B I solve (3.5). I,t terms of the nondimensional :, IV(=.s) is

p. exp[(: - 2)a/C2Hs)] F(a'. b': c': ()t,t(:, s) =
2p0(2a)(1 + 3e-°-_ID)t+DtH_ V/s "'-+ a'-'/.tIt._. F(a'. b': c':-3)

{ +,:, ,+,, , [, >,/ ]x F(a', c:-3)F(l+a'-c,l+ -c:2-c;_z)exp .:-2 .s'-'+a"-/.IH+_

p. exp[(: - 1)a/(2//s)] F(a', b': c': C)

2p0(a)(1 + 3e-_/D)t+O/Hs X/s"- + a"-/4H_ F(a'. b': c': -3)

x F(++,b': ' ' b' e' ' - _

_,+,,+,:+,:,+_,_++,_,,++, [ ,/ ]}- -c':2-c' -3) oxp -(:+ 1) s'-'+a_-/tl[_ . (3.6)

if0<:<l.

W(.', s) = p. exp[( : - e)+,/C2H,.)] v(.'. b': ,.': i)

2p0(2a)(l + 3e-'-'"/t)):+D/HsV/.s=' + a'-'/.tH_. /"(,/. b': c"-3)

{_,+,,+,_,:+,>_,,++,,+,,++,, , [, >,/ J- . -c:2-c:n),'Xl> :-:2 s"+a'-'/-lf[_

-- " " , ') _2F(a'.b':c':u)F(l++t'-c.l+b'-c.':'2-+.:-._'toxp -(: ++)V*.s +++:"/t[[



I,. ,.xp[(: - l).t(_f/_.)] /.(.', t,':,.': .)

:_pu(,+)(t + ,;_,.... /t>)_+DtH_/.+'-, +.'-'tlt1_ f+'(,+',1_':,": --.3)

(a.r)

ira < = <2, and

_V(:. s) =
p. e._p[( : - 2)_,I(2H_)J F(.', t,': ,,': ,,)

2p0(2a)(t + 3e -''''/L_)_+D/tt_ @s'-' + a'-'/-lH._, F(a', b': c':-,3)

,,, [ J ]}-F(a b:c;q)F(l+ c,l+ -c;2-c;-3) exp-(:+2) s2+a2/4Hs

p. exp[(: - t)al(2Hs)] F(a', b'; c': _,)

2p0(a)(l + 3e-_/D)_+D/H-_X/s2 + a'-'/4H_ F(a',t/;c';-3)

x {F(a' b':c':-3,F(l+a'-c',l+b'-c"2-c':(,exp[-(:- 1)V/s'-+a'-'/4H._. ]

(3.s)

if 2 _< z. The parameters a', b' and c' are defined by (B.4)-(B.5). In the limit of,3 --+ 0 (an isothermal

atmosphere), the hypergeometric functions tend to one and we recover Lamb's solution (A.5). During the

numerical inversion of (3.6)-(3.8) a numerical algorithm developed by Mayrhofer and Fischer (1994) was

employed to compute Gauss" hypergeometric series for moderate values of {s{. For large Is{. the asymptotic

expansion (Luke 1969, Section 7.2) for the series was used.

To obtain p(z,t) and O(:,t), we take the Laplace transform of (2A) and (2.5). The nondimensional,

Laplace-transformed form of these equations are

a dOo _I(:,s) (3.9)
sO(:.s)- p. O0(:) [H(: - I) - H(: - 2)] "IT. d:;,po(z)To(z)

and

_'P(z,s) = tt(: - 1) - H(: - 2) + a Po(:) W(z.u) p0(z)c e dIV(:,u) (3.10)
_,,Hs p. p.c'_ d:

All of the transforms were inverted numerically using Talbot's method (.Murli and Ftizzardi. 1!)90). except

for those terms when the inverse could be obtained by inspection.

To illustrate our solution I first found the 7". for a given .] which gave a surface temperature' n<_ar 2,qS

K. Because T. decreases with 3. so does ft_ and a/H.s increases. These vahws ar_" summarized in Tablo 1.



Fora given+3aml a/l[.+ I then ,',;tnpuled the energ+,tics for larg_' +. Only tho a+,,ail;d>h + potential at+d

("1l+stii" elterL_ios ;tr,p nonz(+ro alltI they are given in Tabh, I. Tho "as_, of ._' = 0 provi, l+'cI a ch_,ck on tlt++

code. ,ks this table shows. ,as 3 hlcreases the available potential energy d(+cr+,as(,s whib, the available elastic

increases. Taken together, their sum decreases with acorresponding increase in th(' amount of transients.

This is shown in Fig, 3+ Although there are very slight changes in the locations of the maxima and minima.

the evolution of the various energies follows the life cycle found in th+' Lamb probh'm.

To understand these slight changes I have plotted the vertical velocity at various times in Fig. 4. As one

might expect, differences in the local speed of sound has affected the propagation of the various wave fronts,

resulting in slight, changes in the exact placement of the maxima and minima in the energetics diagram. On

the other hand, we can identity the same progression of wave pulses regardless of the value of J.

Having found the effect that continuous stratification has on hydrostatic adjustment, let us look at the

limiting case when the stratification is concentrated in a discontinuity.

4. Two-Level Model

As counterpoint to the results presented in the previous section where the basic state's temperature

decreased exponentially from 7".(1 + 3) to 7+.. we now examine hydrostatic adjustment in a two-level atmo-

sphere consisting of an isothermal troposphere at. temperature Ti (or scale height Hi) and depth II which

lies underneath an infinitely deep, isothermal stratosphere at temperature T. (or scale height Hs). Because

each layer is isothermal, (2.2)-(2.5) still holds in each layer. However, the basic state is now given by

{ p.e -:/u_ 0<:<H {Tie '_:/H_ 0<:<H/90(2) ---- HttII-(z-H)/Hs 00(.7 ) = T.e_=tHs+,_tt/if t (4.1)p.e- H<:, . H<:.

arid

f p.T.e-zlHt/Tt. 0 < .: < [1
p0(:) (4.2)[ p.e -HIHI-(z-H)/Ifs H _ z.

Using the same nondimensionalization as in Section 2, [ show in ,X.ppendix C that the Laplace transform

of the nondimensional velocity is

(4.a)



anl t

whero

= [<.,t,,, - l)].

_V_(=.sl=, ) = c-_"l=-".'l/#L L- e-_',c-'+=.)/t_

_ [e-._,l .... ' + ,p,,, .... i _ ,_-,,,(-'+=, ;,_ e,,,+:=+:_ ',,]

x [._Ie-'-'_',"I<,_ A2e-4,,,"I._ + A3e-'_Hi,,_...]

forO<=< H/a,

e H/2H3-H/2H' _'1"2(=, S[=s) =

(4.4)

for H/a < :,

/I'_ (4.5)

e-t'_(Hla-:') -- e-tq(H/a+=') [_4e-
IZt + t_: -- a

"__,,Hla _ ..t2e-4,,, H/a A- .43e - _'' H/a _ ...]

(4.6)

.-t -- Ill P2 + o and a = I - . (4.7)
I_I + #_ - a' 2Hs _,'f[s ltl J

The variable Pi is given in (C.7) with the restriction that Re(/l__) > 0. We nlav compute O(z. s) and P(z. s)

from (3.9)-(3.10).

Equation (4.3)-(4.7) provide a clear physical picture of the wave field. The first term in (4.5) represents

the direct wave excited at _ - _,. Waves radiate both upward and downward. The downward propagating

waves eventually refect at the earth's surface and then propagate upward. This process is given by the

second term in (4.5).

VVhen a direct or reflected wave reaches the tropopause, a portion is reflected back into the troposphere

[the term given by .4e -2_'_H/a in (=t.5)] and some of the energy escapes into the stratosphere [the term given

by .4e --"*'_H/<' in (4.6)]. The waves ttlat are reflected by the tropopause propagate down to the eartil's

surface where they are reflected. These reflected waves again propagate to the tropopause wtiere son/e of the

energy is reflected and some escapes. Thus the terms given by .-t"e -'-''a'_Ht_' ill (:I.5) represents the internal

reflections within the tropospheric waveguide while the correspondillg terms in (4.6) represent the continual

bleeding of energy out of the troposphere. Eventually all of the transients escape, leaving the hydrostatically

adjusted basic state. Because these modes represent the leakage of wave energy away from the troposphere.

we shall refer to them as "leaky modes".



J'o illustrate our resu[ts [ h:tve computed solutions when the' troposphcrh" teml)erdturo is :2!)0 K and the

stratospheric tenlp_wature is 150 and 22(.1 K. Although 220 K is a realistic temperature for the st r;_tosphere,

1.50 K is too cold. My reason for including this case is to see what happens when the temperature contrast

across the tropopaus,' is very strong..\s in the previous sections. Talbot's method was use_l to num,,ricallv

invert the Laplace transform term by term.

Figure .5 shows the temporal evolution of the kinetic (I(E). available potetltial (PE) and availabl,. +'l:t,,t i("

(.\E) energies for the stratospheric temperatures of 290, 220 and 150 K. The tropospheric temperature

is maintained at 290 K. As this figures shows, until the wave front reaches the tropopause, the temporal

evolution is the same, regardless of stratospheric temperature. The differences in the curves of AE and PE

are due to different values of steady-state AE and PE. Table :2 gives these steady-state values and shows

that they increase with a decrease in stratospheric temperature.

The general evolution of the KE, PE and AE is very similar to tlle Lamb problem, tlowever, as

the stratospheric teznperature decreases, several additional and shorter period oscillations develop: this is

especially evident in the plot of kinetic energy. These additional undulations are clue to the reflections within

the tropospheric waveguide and the subsequent release of energy into the stratosphere on a later reflection.

To examine how the presence of a strong tropopause affects the actual wave solutions I have graphed

the nondimensional vertical velocities at. various nondimensional times cilia, where ct is the speed of sound

in the tropospheric layer. Figure 6 shows these results when the stratospheric tentperature is 290 and 1.50 K.

The effect of the colder stratosphere is two-fold: First, wave solutions that propagate into the stratosphere

travel at a slower speed. This is quite reasonable because the temperature and speed of the sound are lower

there. Second we see multiple reflections in the amplitude of the vertical velocity front rettections off the

t ropopause.

5. Conclusions

The efDcts of stratification on hydrostatic adjustment arising from tropospheric diabatic hoating have

been examined. These are the key" tinding:

• To a good approxinlation, hydrostatic adjustment in a stratifiec[ atmosphere is ,,imitar to that iu an

10



isoth<:r,,,alatmosphore: l,titiallvacousticwa,,_,sare gonerato<lwith the kineticenergy gr_wi,,gor ,l¢_caying

at. the expense' t.[l+' availal_h., _qastic energy. Within two oscillations the aco,{stic waves eve)iv,, into acoustic-

gravity waves. Hydrostatic adjustment occurs during the next :1 t.o 4 oscillations.

• In an atmosphere with contimtous stratification, the primary effect of the stratificalion is on the shape and

amplitude of the disturbances as dilt;+rences in the local speed of sound accelerate and retard propagation.

• ht an atmosphere with a sharp tropopause, small, but clisti,lct, reflect.ions may be obs+_rved. Ilwse internally

reflecting waves trap a small amount of the energy within the tropospheric waveguide. Eventually all o1"the

transients are able to escape and radiate out to infinity.

l!



Appendix A

We begin our solution of (2. t0) I>y first introdu('ing t,h," ttondill.msioual variabh's z' = z/ct. t' = ct/n

and td - w/Aw. Dropping the l_t'itn+,s+ we have that

c-w :+ 0w O'+'w p.

Ot---:7-' + tfs Oz Oz-' - Po [<_(z - 1) - c_(z - 2)]d(t). (A.t)

Taking the Laplace transfornt of (A.1), we flint that

dz"- 's2 + _+'_'= e+/2H:a(z -- 1) -- e';/"t:g(z -- 2). (A.2)

where W(z,s) = ea:/2tt:}V(z,s). To solve (A.2), we use Fourier sine transfornls. We have chosen this

particular transform because it ensures that w(0, t) = 0 for all t. Upon applying this transform, we obtain

-- sin( 2k )e+/ H : -- sin( k )cat'-H :

"W(k..s) = k" + s _-+ a_-/4H_ (A.3)

Consequently,

B,'(z, s) = 2 L _ sin(2k)e _/H: -sin(k)e a/eH-_7, k'-' + s 2 + a--Q-q-H7 sinCkz) dk (A.4)

= 2_/: + :-/4:(_. +-1_-_-1_/'_+_I4H:- e-!++_-)W,-'+_:l-m_

- <°I-""+ [,+-I+-<'-++°-+'":- ]. (A.5)
2V/S 2 + a2/4H_

where we have evaluated (A.4) using integral tables (Gradshteyn and lqyzhik 1965. formula 3.742.1 ). Because

k -_2 -_ _T = Jo - (A.6)

we obtain (2.11) front (A.5).

To compute p(z, t) and O(z, t), we take the Laplace transfortn of (2.4) and (2.5) and find that,

H(:- 1) - H(:- 2)
P(z, s) =

S

l-'a/Hvg-az/2tf-_ [sgn(._ "2)-1:-21_14H_ e-_:+z)_ ]
+ _e - _ e ,, _ s

l_e,a/2Hs e .... /2tlm [sgn( z 1) e-':-tl_/4H- e-,z+,)x/,z+,,z/+tt_ ]q _t 3

{:,- 2)<,,,,I,.+....I+-.+[ --'t<,:+,.-'t-+,,: I
--_-- .-77.,.7., Le-l:
42"H ._s V ,s- +, - /4 lt._ J

(..- 2)a:<'/'->H:,. .... /'-'it+ [ _l:_tlvi,_,+,__>i.tt,. _, +t+x/.,_,+.,_,/4,,,. }
+ ---_----,, 7,., te -e-t2.[[s's v ._'-+ a-/-tH.g. J

(A.7)
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_tlld

(-)(z+._)= c!t+_",_/u+

+

l[(z- l)- H(: -2)

",,s

_'a""/"'rCi++""'::/'-"q_ [ ]_-I=-21 vl.++-++,,.; /.+u3 _ e-+._+ ")v/.,;-'++,:/+,qG
"2. [I w ] "' "sV',S- + <z-/41f_;

mre<'/'2U+,'it+'-"_"+:/"-ffs[ tdx/s.,+a_,/.iH_ _ _ +-(:+t)x/s"+a"/411_ ]+ • .) +_ .)2_,,H,,'sV/S - + a'�lilt,+ e-t:-

To find p(z.+) and 0(z. t), we must invert two t ransfortns:

(AS)

e-":'_/_ e - +¢77--'+<_-,
F(s) - and G(,s) - b > 0. (A.9)

s sv/TY-'+ a'-'

+ •- =.bc ____.;: H(t-b)

To invert F(s), we note that

or

so that

c-ba (-b,/_Z;--'+a 2

S S

-ab£
[H(t - b) ib t J_(a_ b2 ) dr]vl_____b5

= H(t-b) 1-ab .... dr
\ ,_ v_-'-V- "

: +,/++'o(<, )+,+.

In a sitnilar manner,

(A.10)

(A.lt)

(A.12)

(A.13)

Appendix B

We begin our solution by' introducing II'(z,s) = e.... tHs_,V(z.s). E¢l . (3.5) then becotnes

(l + 3e -<_:/D) (d'-'_4;\--yT_ +----
2.v d'_V

g q 6.7

a'v'-' \ .+,, f dl4' av "x
- ! --}V - s'-'W,,<-m=+,,+ )
- P" +..... tH-_[a(:-- i)--a(: --2)}.

p(_(:)

We nov¢ introduce the new independent variable u = -')e -azlD. Equation (B 1) beconies

(1 - u)u d'-')l'--- ' --d,,'-' + [c' - (i - a - b'),,] `t_'v -<+'"-b"-'_V=+lu

D'-'p. U vDttts-I

._.2po(u) (_,3).Ollt _ [O'(u- Ul)- (JCu- tt'_,)],

(B.1.

(B,2)

13



whore

f J +_ .)
+I++-fl;,,

u= l- [+
2 2 v (+'-'

(B.3)

({ =b'- D t- t+ _ .
2 H s" a-

(n.4)

D i -[ '+¢ _ //L_"c'= 1+_, l+--c{, (B.5)

and ni denote the value of _Lcorresponding to :i.

Our particular choice of v was motivated by two factors. First. this choice yields tile classic Gauss

tD'pergeometric equation. Second. we anticipate that the solution for tile exponential temperature profile

should be very similar to Lamb's solution. After all, the temperature profile differs markedly only near the

ground. If we choose the v given by (B.3), then e ¢w:ltts becomes the Land) solution and "I,V(z` s) is merely

the correction arising front the e -a:/D t,erm in the temperature profile.

Consider the differential equation

d_g b' . dg
(t-.).7__.. +[e'-(t-a'- ),,J_-a'-%'-'q=-a(,,-i). (B.6)

With the requirement that g(-,3[() = O,

a(_l() = (CxEF(_',b' c':u)G(a',b'.c':-3)-F(a',b',c':-3)G(a',b';c':u)], -3<_ u <_(.
C2F(a',b';c': u), ( < . < 0.(

(B.r)

where F(a', b': c': u) and G(a', b': c': u) are hypergeometric fimctions of the first and second kind. respectively.

See Lebedev (1972, Chapter 9). Tile arbitrary constants ('t attd C_2 are found by requiring that

,Ig I¢÷
lira g("l()= lira g(ul() and (1-u).7-1 =-I. (B.8)

u--+ ( - u-+_+ (lll ](-

The second condition in (B.8) follows from integrating (B.6) over the infinitesimally thin interval [(-.(+],

where (- and (+ denote points just below and above the point u = (. These relationships yield

r(a') F(b') F(d, b': c': ()
C't = (B.9)

r(e')( 1-'.'( t - 4) _'-'`' -_' F(a'. b': c'; -,3)

(/nil

(,.: = r(,+')r(b')[F(.', b': ,": 4)(;(a', b'. e': -3) - F(.', b'. c': -.3)(;(+d. b': c': q-)] (B.10)
I'(," )41-':'( 1 - ()':'-"'-_/F(a', b'; c': -,3)
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whore ['( ) is t h,' gauttn;t ['un('tion (Lob+,(t,,v. I!)T_, ('haptor l). In dori',h,g (l}.!)) (B.LO) w+, havo used the

prol)erties c,[" lhc' _,Vrottskian ;ts they ai)p[y t(;, hyl)c'r/ooluotri< 1 l'Hllcti()tlS (L,'b,' by. t972. p. 27_, probh'ni 9).

.qttbstit.utir_g of (_'t and (.'.J it+to (11.7) yM,:Is

v(_+I¢) =
(-3) t-c' f+'(a '. b': c': u)F( i + a' - c'. 1 + b' - c','2 - c': -3) F(a'. b'; c';()

(,:' - l )¢_-+"( 1 - @"-"'-+' F(.', b': c': -3)

u t-c' F(a'. b', c': -3)/:(1 + rt' - c'. t + b' - c': 72 - c': u)F((, d. b': c': <)

(c' - l)_-t-_'(t - O': '-':+' F(.'. b': c': -3)
(B 11)

if-3<_ u_<¢,and

.a(,_lO =
(-3) t-e' F(a', b'; c'; () F( 1 + a' - e', 1 + b' - c'. "2- e'; -3)F(a'. b': c': u)

(e' - l)(t-+'(t - ()c'-_'-b'F(a',b';c':-3)

¢ 1-_' F(a'. b', c':-3)F( t + a' - c', 1 + b' - c': "2- c': C)F(a'. b': c': u)

(e' - 1)¢_-_'(1 - ¢)_'-_"-b' F(a '. b'; e':-3)
(B.11)

ifC <_ u _< 0. To derive (B.11)-(B.12) we used the relationships that f(c')/r(c'- 1) = c'- 1 and the

relationship between (;(a'. b', c' z) and F(a', b'. c'; z) (Lebedev, 1972, p. 277, problem 7). The final sohttion

is obtained by substituting for a', b' and c', applying the results to each of the impulsive forcings in (B.2)

and multiplying by the appropriate coefficients.

Our ability to express G(a', b': c': z) in terms of F(a'. b': c': z) attd F(1 + a' - c'. 1 + b' - c' ; 2 - c'; z)

requires that the contour of integration not pass near the singularities c' = 0. +1. +2 ..... When the contour

generated by the numerical inversion did. we took an equivalent contour [increased A as suggested by Murli

and Rizzardi (1990)] to avoid coding this special case.

Appendix C

We begin our analysis by taking the l, aplace transform of (2.10). Because of the linearity of the problem,

we only have to solve an equation of the form

H+ 02wt a Oul i)2tci H__p.
+ d(:-:,)d(t) for 0 < : < H/a (C.1)

H1 0( 2 HI i)z Oz'- Hlpo(z,)

and

"'2 a Ow,2 0" w.,
-- + - 0 for H/a < z. (C.2)

i)t "2 Hs 0z i): _
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+I'ofind t.hesolutionl+ot+(72.1(.I)v,clll_'nsul>Ir;u'tth,+soluti,:)nfor +: = 2 fr,,)ttttheonef,>r:< = I. +tgaitlI

hay+, scaled the vertical distance with a alibi time with a./,'.. Denothig tit+.' tr<uisl'ortti o{" the itOtl_.lilil¢'tlSiOiial

v+'rtical velocity by lli(:, s). we hay+' that

d"+>)Vt ( 11,., a -__ +l._.i,:, //.<<io.-=.- + w, : ,-"- --+(: - :,) (c.3)
d2 3 \ tll ll ipo( :s )

for the troposphere and

d-'>,'.: ( ,dd-'-' s'-' + _) I,V'._,= 0 (C4:i

for the stratosphere, where UQ(:, a) = e":/-+H_"Wt(:, s) and lVe(:, s) = e_:/+-H-+}Ve(:, s).

Taking wl(0, t) = 0 and the radiation boundary condition into account, the solutions to (C.3)-(C.4) are

Asinh(pt:), 0 < : < :.,14,'1(:, s) = Bsinh(pl:) + Ccosh(pi:). :, < : < Hta
(C.5)

a.nd

where

}v.,Cz,s) : Dexp[-p.,(: - H/a)]. (c.6)

•> H_.j_s.2 a2 " el2

P7 = H1 s + 4H--p- and p7_, = s+-+ 4H---_" (C.7)

Here we have chosen the branch Re(p_) > 0. The remaining task is to find A, B, C and D. The kinematic

boundary coiidition leads to _"i( H, s) = Vv"-"+,(H.s), where I,V-"-:,(:. s) = e HI+-Hs-HI'-'u_ 14'2(z, s). A combination

of the dynamic and kinematic boundary conditions applied to the Laplace transformed (2.4) yiekts the second

condition that

,+,,,,+.,,-,,,,-,,,..,,<,=+,+.+ ;,,+° ++,,
At tile point of siiigularity, cont, itluity of the soltttion req llres that I'Vt(:_-. s) = )'Vt (z +, s). where :j-

and -+ denote points just below and above : : + respectively. Fhmllv. an integration of(C.3) over the

interval [:,-, :+] yields the final condition that

.+

d:
= e-_'" i._,#h Hsp. . (C.9)

ttipo(zs )

Substituting (C.5) (C.6) into these four conditions gives the sohitions listed in Section :It. except in ternis

of hyperbolic cosines and siiies. Finally we express tile hyperbolic futtctions in terms of exponentials and

expan(l the denominator as a gooinetric series in e -'''*IIt''_
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Tables

T:d)b' L Distribution of availatA_' potential (PE) an(I avaiLabl,, elasti(" (.\E) energies in the" [inal equilibriuln

s,;m, in an nonisothermal atmosphere where thr_ temperature I_ehave.s a,'cording to (3.1) with D/l/s =- 1.5.

[he percentages give the ratio of the corresponding energy to the total energy.

3 7". Y_l(0) ,t/'H," PE AE

0.0 290 N 290 K 0.500 64.74_7c 6.71%

0.1 260 K 288 K 0.558 60.58% 8.32%

0.2 240 K 286 K 0.60,I 56.92% 9.79e_:

0.3 220 K 286 N 0.t_59 53.57_/-_ I 1.39%

Table 2: Same as Table 1 except for a two-level atmosphere with :z/Hs = 0.5.

Tropospheric

Temperature

St, ratospheric

Temperature

PE AE

|

290 K 290 K 64.74_ 6.71c7¢

290 K 220 K 65.55% 7.35_7e

290 K 150 1( 66.69_,_ 8.39_



Tables

"fM>h_l: Distribution of available potential (PE) and available elastic (AE) energies in the final equilibrium

state in an lmnisothermal atmosphere where the temperature behaw_s according to (:L1) with D/Hs = 1.5.

The percentages give _he ratio of the corresponding energy to the total energy.

3 T. T0(0) a,/H_ PE .\E

0.0 290 I( 290 I( 0.500 6-1.74_ 6.7 l%

0.1 260 I( 288 I( 0.558 60.58C/c, 8.32%

0.2 240 K 286 N 0.604 56.92_ 9.793

0.3 220 K 286 K 0.659 5:}.57_Zc 11.39c_

Table 2: Same as Table l except for a two-level atmosphere with a/Hs = 0.5.

Tropospheric

Temperature

Stratospheric

Temperature

PE AE

290 I( 290 K 64.7.t{_ 6.71_

290 I( 220 K 65.55% 7.35{_

290 K 150 K 66.69_ 8.:_;9(_



Figures

Figure 1: The trat,sient portion of ;wailabh. +elastic (AE). available p,_tetltinl (PE) and kinetic (I<E) energies

in ternts of the percentage of total energy as a function of tn>ndinlension:_+l time ct/++. The solid

line gives the case when a/H.s = 0.25 while the dashed line corresponds to a/[[5 = 0.5.

Figure 2: The variation of int,+grand of (2.l!)) corresponding to the the a,.Mtable elastic (+\E). nvail:+lAe

potential (PE) and kinetic (KE) energies as a function of nondintensional distance :/a at the

nondimensional times of ct/a = 10 (sotid line)+ :25 (dashed line) and 50 (dot-dashed line). The

parameter a/Hs = 0.5.

Figure 3: Same as Figure 1 except for an atmosphere with a basic state temperature given by (3.1). The

solid line gives the isothermal case when T. = 290 I_ and 3 = 0 while the dashed and long dashed

lines correspond to 7+. = 2.50 K. ,3 = 0.1.5 and 7". = 220 1(. J = 0.3. respectively.

Figure 4: The nondimensional vertical velocity, in an atmosphere where the basic state temperature is given

by (3.1). The solid line gives the isothermal case of 7'. = 290 K and 3 = 0 while the dashed line

corresponds to 7+. = 220 K and 3 = 0.3. The corresponding a/H++ are 0.._ and 0.66, respectively.

The snapshots are at the nondimensional times cl/a of (a) 1.0, (b) 1..5. (c) 2.0 and (d) 2..5. where

c is the speed of sound corresponding to 290 K.

Figure 5: Same as Figure l except, for a two-level atmosphere. The solid line corresponds to the case when

the stratospheric temperature is 290 K: the clashed line, 220 I(: and the dash-dotted line. 1.50 I(.

In all cases the tropospheric temperature is 290 I(. The nondinlensiot_al time ix now ctt/a and

a/Hs = 0..5. where at is the speed of sound in the troposphere.

Figure 6: Same as Figure 4 except for a two-level atmosphere where the tropospheri+: temperature is 290 1(

and the stratospheric temperature is either 290 [_ (solid line) or 1.50 l( (dashed line). The snapshots

are at the nondimensional times ctt/rt of (a) 1.0+ (b) 1..5. (e) 2.0 and (d) 2..5 and (t/tf< = 0.5,

where ct is the speed of sound in the troposphere. The tropopause lies at :/_t = 2.8:_7.
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in terms of the percentage of total energy as a function of nondimensional time ct/a. "l_'he solid line gives the

case when a/Hs = 0.2.-) while the dashed line corresponds to a/[l_ = 0.3.
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Popular Summary

"[he atmosphere is full o[" waves which dilfer widely in length and tim," between peaks..\ special group.

called a(:oust.ie-gravity waves, are generated whenever large pressure differen('es occur between adjacent

chunks of air, such as during earthquakes, developing thun(lerstorlns, and even during the lamlch of the

space shuttle. Although a theory has been constructed of how these waves would propagate out to space

if the atmosphere had the same temperature everywhere, this is not very realistic because temperature

decreases with altitude. In this paper realistic temperatures are taken into account and it is shown how these

variations affect this radiation of energy into space. With the advent of nonhydrostatic models which include

these acoustic-gravity waves, this study will hopefully provide tools to better understand these new models.
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